Reference: Suzuki T and Lennarz WJ (2003) Hypothesis: a glycoprotein-degradation complex formed by protein-protein interaction involves cytoplasmic peptide:N-glycanase. Biochem Biophys Res Commun 302(1):1-5

Reference Help

Abstract

A cytoplasmic peptide:N-glycanase has been implicated in the proteasomal degradation of newly synthesized misfolded glycoproteins that are exported from the endoplasmic reticulum to the cytosol. Recently, the gene encoding this enzyme (Png1p) was identified in yeast and shown to bind to the 26S proteasome through its interaction with a component of the DNA repair system, Rad23p. Moreover, a mouse homologue of Png1p (mPng1p), which has an extended N-terminal domain, was found to bind not only to the Rad23 protein, but also to various proteins related to the ubiquitin/proteasome pathway. An extended N-terminus of mPng1p, which is not found in yeast, contains a potential site of protein-protein interaction called the PUB/PUG domain. The PUB/PUG domain is predicted to be helix-rich and is found in various proteins that may be involved in the ubiquitin/proteasome-related pathway. This review will discuss the consequence of the deglycosylation reaction by peptide:N-glycanase in cellular processes. In addition, the potential importance of the PUB/PUG domain for the formation of a putative "glycoprotein-degradation complex" will be discussed.

Reference Type
Journal Article | Review | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Suzuki T, Lennarz WJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference