Take our Survey

Reference: Kruse C, et al. (2002) Ribonucleoprotein-dependent localization of the yeast class V myosin Myo4p. J Cell Biol 159(6):971-82

Reference Help

Abstract

Class V myosins are motor proteins with functions in vesicle transport, organelle segregation, and RNA localization. Although they have been extensively studied, only little is known about the regulation of their spatial distribution. Here we demonstrate that a GFP fusion protein of the budding yeast class V myosin Myo4p accumulates at the bud cortex and is a component of highly dynamic cortical particles. Bud-specific enrichment depends on Myo4p's association with its cargo, a ribonucleoprotein complex containing the RNA-binding protein She2p. Cortical accumulation of Myo4p at the bud tip can be explained by a transient retention mechanism that requires SHE2 and, apparently, localized mRNAs bound to She2p. A mutant She2 protein that is unable to recognize its cognate target mRNA, ASH1, fails to localize Myo4p. Mutant She2p accumulates inside the nucleus, indicating that She2p shuttles between the nucleus and cytoplasm and is exported in an RNA-dependent manner. Consistently, inhibition of nuclear mRNA export results in nuclear accumulation of She2p and cytoplasmic Myo4p mislocalization. Loss of She2p can be complemented by direct targeting of a heterologous lacZ mRNA to a complex of Myo4p and its associated adaptor She3p, suggesting that She2p's function in Myo4p targeting is to link an mRNA to the motor complex.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Kruse C, Jaedicke A, Beaudouin J, Bohl F, Ferring D, Guttler T, Ellenberg J, Jansen RP
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference