Take our Survey

Reference: Lehmann AR (2002) Replication of damaged DNA in mammalian cells: new solutions to an old problem. Mutat Res 509(1-2):23-34

Reference Help

Abstract

All cells need not only to remove damage from their DNA, but also to be able to replicate DNA containing unrepaired damage. In mammalian cells, the major process by which cells are able to replicate damaged templates is translesion synthesis, the direct synthesis of DNA past altered bases. Crucial to this process is a series of recently discovered DNA polymerases. Most of them belong to a new family of polymerases designated the Y-family, which have conserved sequences in the catalytic N-terminal half of the proteins. These polymerases have different efficiencies and specificities in vitro depending on the type of damage in the template.One of them, DNA polymerase eta, is defective in xeroderma pigmentosum variants, and overwhelming evidence suggests that this is the polymerase that carries out translesion synthesis past UV-induced cyclobutane pyrimidine dimers in vivo. DNA polymerase eta is localised in replication factories during DNA replication and accumulates at sites of stalled replication forks. Many studies have been carried out on the properties of the other polymerases in vitro, but there is as yet very little evidence for their specific roles in vivo.

Reference Type
Journal Article | Review | Review, Academic
Authors
Lehmann AR
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference