Reference: Boer VM, et al. (2003) The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur. J Biol Chem 278(5):3265-74

Reference Help

Abstract


Profiles of genome-wide transcriptional events for a given environmental condition can be of importance in the diagnosis of poorly defined environments. To identify clusters of genes constituting such diagnostic profiles, we characterized the specific transcriptional responses of Saccharomyces cerevisiae to growth limitation by carbon, nitrogen, phosphorus, or sulfur. Microarray experiments were performed using cells growing in steady-state conditions in chemostat cultures at the same dilution rate. This enabled us to study the effects of one particular limitation while other growth parameters (pH, temperature, dissolved oxygen tension) remained constant. Furthermore, the composition of the media fed to the cultures was altered so that the concentrations of excess nutrients were comparable between experimental conditions. In total, 1881 transcripts (31% of the annotated genome) were significantly changed between at least two growth conditions. Of those, 484 were significantly higher or lower in one limitation only. The functional annotations of these genes indicated cellular metabolism was altered to meet the growth requirements for nutrient-limited growth. Furthermore, we identified responses for several active transcription factors with a role in nutrient assimilation. Finally, 51 genes were identified that showed 10-fold higher or lower expression in a single condition only. The transcription of these genes can be used as indicators for the characterization of nutrient-limited growth conditions and provide information for metabolic engineering strategies.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Boer VM, de Winde JH, Pronk JT, Piper MD
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference