Reference: Bhaumik SR and Green MR (2002) Differential requirement of SAGA components for recruitment of TATA-box-binding protein to promoters in vivo. Mol Cell Biol 22(21):7365-71

Reference Help

Abstract

The multisubunit Saccharomyces cerevisiae SAGA (Spt-Ada-Gcn5-acetyltransferase) complex is required to activate transcription of a subset of RNA polymerase II-dependent genes. However, the contribution of each SAGA component to transcription activation is relatively unknown. Here, using a formaldehyde-based in vivo cross-linking and chromatin immunoprecipitation assay, we have systematically analyzed the role of SAGA components in the recruitment of TATA-box binding protein (TBP) to SAGA-dependent promoters. We show that recruitment of TBP is diminished at a number of SAGA-dependent promoters in ada1delta, spt7delta, and spt20delta null mutants, consistent with previous biochemical data suggesting that these components maintain the integrity of the SAGA complex. We also find that Spt3p is generally required for TBP binding to SAGA-dependent promoters, consistent with biochemical and genetic experiments, suggesting that Spt3p interacts with and recruits TBP to the core promoter. By contrast, Spt8p, which has been proposed to be required for the interaction between Spt3p and TBP, is required for TBP binding at only a subset of SAGA-dependent promoters. Ada2p and Ada3p are both required for TBP recruitment to Gcn5p-dependent promoters, supporting previous biochemical data that Ada2p and Ada3p are required for the histone acetyltransferase activity of Gcn5p. Finally, our results suggest that TBP-associated-factor components of SAGA are differentially required for TBP binding to SAGA-dependent promoters. In summary, we show that SAGA-dependent promoters require different combinations of SAGA components for TBP recruitment, revealing a complex combinatorial network for transcription activation in vivo.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Bhaumik SR, Green MR
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference