Reference: Trotter EW, et al. (2002) Misfolded proteins are competent to mediate a subset of the responses to heat shock in Saccharomyces cerevisiae. J Biol Chem 277(47):44817-25

Reference Help

Abstract

Cells may sense heat shock via the accumulation of thermally misfolded proteins. To explore this possibility, we determined the effect of protein misfolding on gene expression in the absence of temperature changes. The imino acid analog azetidine-2-carboxylic acid (AZC) is incorporated into protein competitively with proline and causes reduced thermal stability or misfolding. We found that adding AZC to yeast at sublethal concentrations sufficient to arrest proliferation selectively induced expression of heat shock factor-regulated genes to a maximum of 27-fold and that these inductions were dependent on heat shock factor. AZC treatment also selectively repressed expression of the ribosomal protein genes, another heat shock factor-dependent process, to a maximum of 20-fold. AZC treatment thus strongly and selectively activates heat shock factor. AZC treatment causes this activation by misfolding proteins. Induction of HSP42 by AZC treatment required protein synthesis; treatment with ethanol, which can also misfold proteins, activated heat shock factor, but treatment with canavanine, an arginine analog less potent than AZC at misfolding proteins, did not. However, misfolded proteins did not strongly induce the stress response element regulon. We conclude that misfolded proteins are competent to specifically trigger activation of heat shock factor in response to heat shock.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Trotter EW, Kao CM, Berenfeld L, Botstein D, Petsko GA, Gray JV
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference