Reference: Nagar B, et al. (2002) Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571). Cancer Res 62(15):4236-43

Reference Help

Abstract

The inadvertent fusion of the bcr gene with the abl gene results in a constitutively active tyrosine kinase (Bcr-Abl) that transforms cells and causes chronic myelogenous leukemia. Small molecule inhibitors of Bcr-Abl that bind to the kinase domain can be used to treat chronic myelogenous leukemia. We report crystal structures of the kinase domain of Abl in complex with two such inhibitors, imatinib (also known as STI-571 and Gleevec) and PD173955 (Parke-Davis). Both compounds bind to the canonical ATP-binding site of the kinase domain, but they do so in different ways. As shown previously in a crystal structure of Abl bound to a smaller variant of STI-571, STI-571 captures a specific inactive conformation of the activation loop of Abl in which the loop mimics bound peptide substrate. In contrast, PD173955 binds to a conformation of Abl in which the activation loop resembles that of an active kinase. The structure suggests that PD173955 would be insensitive to whether the conformation of the activation loop corresponds to active kinases or to that seen in the STI-571 complex. In vitro kinase assays confirm that this is the case and indicate that PD173955 is at least 10-fold more inhibitory than STI-571. The structures suggest that PD173955 achieves its greater potency over STI-571 by being able to target multiple forms of Abl (active or inactive), whereas STI-571 requires a specific inactive conformation of Abl.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Nagar B, Bornmann WG, Pellicena P, Schindler T, Veach DR, Miller WT, Clarkson B, Kuriyan J
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference