Reference: Hongay C, et al. (2002) Mot3 is a transcriptional repressor of ergosterol biosynthetic genes and is required for normal vacuolar function in Saccharomyces cerevisiae. EMBO J 21(15):4114-24

Reference Help

Abstract


The Saccharomyces cerevisiae MOT3 gene encodes a nuclear protein implicated in both repression and activation of transcription. However, a mot3 Delta mutation causes only mild phenotypes under normal growth conditions. To learn more about Mot3 function, we have performed a synthetic lethal screen. This screen identified PAN1, a gene required for normal endocytosis, and VPS41, a gene required for vacuolar fusion and protein targeting, suggesting a role for Mot3 in the regulation of membrane-related genes. Transcriptional analyses show that Mot3 represses transcription of ERG2, ERG6 and ERG9, genes required for ergosterol biosynthesis, during both aerobic and hypoxic growth. Chromatin immunoprecipitation experiments suggest that this repression is direct. Ergosterol has been shown to be required for endocytosis and homotypic vacuole fusion, providing a link between Mot3 and these processes. Consistent with these results, mot3 Delta mutants have a number of related defects, including impaired homotypic vacuole fusion and increased sterol levels. Taken together, our data suggest that proper transcriptional regulation of ergosterol biosynthetic genes by Mot3 is important for normal vacuolar function and probably for the endocytic membrane transport system.

Reference Type
Authors
Hongay C, Jia N, Bard M, Winston F
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference