Take our Survey

Reference: Xing F, et al. (2002) A conserved family of Saccharomyces cerevisiae synthases effects dihydrouridine modification of tRNA. RNA 8(3):370-81

Reference Help

Abstract

Dihydrouridine modification of tRNA is widely observed in prokaryotes and eukaryotes, as well as in some archaea. In Saccharomyces cerevisiae every sequenced tRNA has at least one such modification, and all but one have two or more. We have used a biochemical genomics approach to identify the gene encoding dihydrouridine synthase 1 (Dus1, ORF YML080w), using yeast pre-tRNA(Phe) as a substrate. Dus1 is a member of a widespread family of conserved proteins, three other members of which are found in yeast: YNR015w, YLR405w, and YLR401c. We show that one of these proteins, Dus2, encoded by ORF YNR015w, has activity with two other substrates: yeast pre-tRNA(Tyr) and pre-tRNA(Leu). Both Dus1 and Dus2 are active as a single subunit protein expressed and purified from Escherichia coli, and the activity of both is stimulated in the presence of flavin adenine dinucleotide. Dus1 modifies yeast pre-tRNA(Phe) in vitro at U17, one of the two positions that are known to bear this modification in vivo. Yeast extract from a dus1-A strain is completely defective in modification of yeast pre-tRNAPhe, and RNA isolated from dus1-delta and dus2-delta strains is significantly depleted in dihydrouridine content.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Xing F, Martzen MR, Phizicky EM
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference