Reference: Fraser HB, et al. (2002) Evolutionary rate in the protein interaction network. Science 296(5568):750-2

Reference Help

Abstract


High-throughput screens have begun to reveal the protein interaction network that underpins most cellular functions in the yeast Saccharomyces cerevisiae. How the organization of this network affects the evolution of the proteins that compose it is a fundamental question in molecular evolution. We show that the connectivity of well-conserved proteins in the network is negatively correlated with their rate of evolution. Proteins with more interactors evolve more slowly not because they are more important to the organism, but because a greater proportion of the protein is directly involved in its function. At sites important for interaction between proteins, evolutionary changes may occur largely by coevolution, in which substitutions in one protein result in selection pressure for reciprocal changes in interacting partners. We confirm one predicted outcome of this process-namely, that interacting proteins evolve at similar rates.

Reference Type
Journal Article
Authors
Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C, Feldman MW
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference