Reference: Marino-Ramirez L and Hu JC (2002) Isolation and mapping of self-assembling protein domains encoded by the Saccharomyces cerevisiae genome using lambda repressor fusions. Yeast 19(7):641-50

Reference Help

Abstract


Understanding how proteins are able to form stable complexes is of fundamental interest from the perspective of protein structure and function. Here we show that lambda repressor fusions can be used to identify and characterize homotypic interaction domains encoded by the genome of Saccharomyces cerevisiae, using a selection for polypeptides that can drive the assembly of the DNA binding domain of bacteriophage lambda repressor. Three high complexity libraries were constructed by cloning random fragments of S. cerevisiae DNA as lambda repressor fusions. Repressor fusions encoding homotypic interactions were recovered, identifying oligomerization units in 35 yeast proteins. Seventeen of these interaction domains have not been previously reported, while the other 18 represent homotypic interactions that have been characterized at varying levels of detail. The novel interactions include several predicted coiled-coils as well as domains of unknown structure. With the availability of genomic sequences it should be possible to apply this approach, which provides information about protein-protein interactions that is complementary to that obtained from yeast two-hybrid screens, on a genome-wide scale in yeast or other organisms where large-scale protein-protein interaction data is not available.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Marino-Ramirez L, Hu JC
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference