Reference: Klevecz RR and Murray DB (2001) Genome wide oscillations in expression. Wavelet analysis of time series data from yeast expression arrays uncovers the dynamic architecture of phenotype. Mol Biol Rep 28(2):73-82

Reference Help

Abstract

A reanalysis of expression arrays in yeast cells synchronized by alpha factor blockade or through the use of temperature sensitive mutants uncovered a genome wide pattern of oscillations in mRNA concentrations. Using wavelet decomposition as a signal processing technique and enhancement strategies borrowed from image processing, noise and trends in the Stanford yeast cell cycle data were partitioned away from time series profiles to uncover genome-wide oscillations in expression. These oscillations which were typically of cell cycle or half cell cycle duration, 40 and 80 minutes in the Stanford data set suggest that there are large-scale temporal structures and high frequency oscillations in mRNA levels through the cell cycle. Wavelet decomposition, which acts like a band pass filter bank, was used to determine where most of the power appeared in the decomposition. The approximately 40-min oscillation is mirrored in continuous chemostat cultures. In these cultures, metabolic synchrony involving an unknown proportion of the transcriptome can be monitored by measurement of oxygen consumption and can be sustained for weeks. These 40-min oscillations are stable and precise with coefficients of variation less than 1% for both period and amplitude. The hypothesis that high and low amplitude oscillations are a ubiquitous property of the genetic regulatory circuitry was supported by the observation of period doubling bifurcations in the distribution of population doubling times in yeast.

Reference Type
Journal Article
Authors
Klevecz RR, Murray DB
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference