Take our Survey

Reference: Ho CY, et al. (2002) A possible mechanism for partitioning between homo- and heterodimerization of the yeast homeodomain proteins MATa1 and MATalpha2. J Pept Res 59(1):34-43

Reference Help

Abstract

The yeast Saccharomyces cerevisiae has three cell types distinguished by the proteins encoded in their mating-type (MAT) loci: the a and alpha haploids, which express the DNA-binding proteins a1, and alpha1 and alpha2, respectively, and the a/alpha diploid which expresses both a1 and alpha2 proteins. In a/alpha cells, a1-alpha2 heterodimers repress haploid-specific genes and MATalpha1, whereas alpha2 homodimers repress a-specific genes, indicating dual regulatory functions for alpha2 in mating-type control. We previously demonstrated that the two leucine zipper-like coiled-coil motifs, called alpha2A and alpha2B, in the alpha2 N-terminal domain are important to a1-alpha2 heterodimerization. A unique feature of alpha2B is the occurrence of three atypical amino acid residues at a positions within the hydrophobic core. We have conducted mutational analyses of alpha2B peptides and the full-length protein. Our data suggest that these residues may play a critical role in partitioning of the alpha2 protein between heterodimerization with a1 and homodimerization with itself.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Ho CY, Smith M, Houston ME, Adamson JG, Hodges RS
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference