Reference: Badi L and Barberis A (2002) The CUP1 upstream repeated element renders CUP1 promoter activation insensitive to mutations in the RNA polymerase II transcription complex. Nucleic Acids Res 30(6):1306-15

Reference Help

Abstract

Activation of transcription in eukaryotes requires the concerted action of numerous components of the RNA polymerase II transcriptional apparatus. The degree of dependence on many of these components varies from gene to gene and it is still largely unknown how the requirement for any particular component is determined at any given gene. We show that removal of Gal11 from the yeast transcription complex can affect activation from the CUP1 UAS in a manner dependent on its genomic context. Our results indicate a novel function for the CUP1 upstream repeated element (CURE) located upstream of the CUP1 UAS at the naturally multimerized CUP1 locus. The presence of CURE endowed the CUP1 UAS with a reduced susceptibility to the effects of deleting Gal11. Similar results were obtained with the Srb/mediator subunit Srb5. Restoration of activation from the CUP1 promoter to wild-type levels by the CURE correlated with changes in the accessibility of local chromatin to nucleases. The CURE sequence may serve to protect the stress-inducible CUP1 UAS-promoter elements against reduced activation that may result from crippled transcription complexes under stress conditions.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Badi L, Barberis A
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference