Reference: Nakagawa Y, et al. (2002) Mga2p is a putative sensor for low temperature and oxygen to induce OLE1 transcription in Saccharomyces cerevisiae. Biochem Biophys Res Commun 291(3):707-13

Reference Help

Abstract


Various low-temperature-inducible genes such as fatty acid desaturase genes are essential for all living organisms to acclimate to low temperature. However, a low-temperature signal transduction pathway has not been identified in eukaryotes. In yeast Saccharomyces cerevisiae, the Delta9 fatty acid desaturase gene OLE1 is activated by ubiquitin/proteasome-dependent processing of two homologous endoplasmic reticulum membrane proteins, Spt23p and Mga2p. We found that OLE1 transcription was transiently activated with resultant increases in the degree of unsaturation of total fatty acids when culture temperature was downshifted from 30 degrees C to 10 degrees C. This activation was greatly depressed in Deltamga2 cells. Although Mga2p is essential for hypoxic activation of OLE1 transcription, and its hypoxic functions are repressed by unsaturated fatty acids (UFAs), low-temperature activation of the OLE1 gene was not repressed by UFAs. These observations suggest that low-temperature and hypoxic signal transduction pathways share some components, and Mga2p is the first identified eukaryotic sensor for low temperature and oxygen.CI - [copyright]2002 Elsevier Science (USA).

Reference Type
Journal Article
Authors
Nakagawa Y, Sakumoto N, Kaneko Y, Harashima S
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference