Reference: Toh H and Horimoto K (2002) Inference of a genetic network by a combined approach of cluster analysis and graphical Gaussian modeling. Bioinformatics 18(2):287-97

Reference Help

Abstract


BACKGROUND: Recent advances in DNA microarray technologies have made it possible to measure the expression levels of thousands of genes simultaneously under different conditions. The data obtained by microarray analyses are called expression profile data. One type of important information underlying the expression profile data is the 'genetic network,' that is, the regulatory network among genes. Graphical Gaussian Modeling (GGM) is a widely utilized method to infer or test relationships among a plural of variables. RESULTS: In this study, we developed a method combining the cluster analysis with GGM for the inference of the genetic network from the expression profile data. The expression profile data of 2467 Saccharomyces cerevisiae genes measured under 79 different conditions (Eisen et al., PROC: Natl Acad. Sci. USA, 95, 14683-14868, 1998) were used for this study. At first, the 2467 genes were classified into 34 clusters by a cluster analysis, as a preprocessing for GGM. Then, the expression levels of the genes in each cluster were averaged for each condition. The averaged expression profile data of 34 clusters were subjected to GGM, and a partial correlation coefficient matrix was obtained as a model of the genetic network of S. cerevisiae. The accuracy of the inferred network was examined by the agreement of our results with the cumulative results of experimental studies.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Toh H, Horimoto K
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference