Reference: Lobachev KS, et al. (2002) The Mre11 complex is required for repair of hairpin-capped double-strand breaks and prevention of chromosome rearrangements. Cell 108(2):183-93

Reference Help

Abstract


Inverted repeats (IRs) that can form a hairpin or cruciform structure are common in the human genome and may be sources of instability. An IR involving the human Alu sequence (Alu-IR) has been studied as a model of such structures in yeast. We found that an Alu-IR is a mitotic recombination hotspot requiring MRE11/RAD50/XRS2 and SAE2. Using a newly developed approach for mapping rare double-strand breaks (DSBs), we established that induction of recombination results from breaks that are terminated by hairpins. Failure of the mre11, rad50, xrs2, and sae2 mutants to process the hairpins blocks recombinational repair of the DSBs and leads to generation of chromosome inverted duplications. Our results suggest an additional role for the Mre11 complex in maintaining genome stability.

Reference Type
Journal Article
Authors
Lobachev KS, Gordenin DA, Resnick MA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference