Reference: Fraser ME, et al. (2002) Two glutamate residues, Glu 208 alpha and Glu 197 beta, are crucial for phosphorylation and dephosphorylation of the active-site histidine residue in succinyl-CoA synthetase. Biochemistry 41(2):537-46

Reference Help

Abstract


Succinyl-CoA synthetase catalyzes the reversible reaction succinyl-CoA + NDP + P(i) <--> succinate + CoA + NTP (N denoting adenosine or guanosine). The enzyme consists of two different subunits, designated alpha and beta. During the reaction, a histidine residue of the alpha-subunit is transiently phosphorylated. This histidine residue interacts with Glu 208 alpha at site I in the structures of phosphorylated and dephosphorylated Escherichia coli SCS. We postulated that Glu 197 beta, a residue in the nucleotide-binding domain, would provide similar stabilization of the histidine residue during the actual phosphorylation/dephosphorylation by nucleotide at site II. In this work, these two glutamate residues have been mutated individually to aspartate or glutamine. Glu 197 beta has been additionally mutated to alanine. The mutant proteins were tested for their ability to be phosphorylated in the forward or reverse direction. The aspartate mutant proteins can be phosphorylated in either direction, while the E208 alpha Q mutant protein can only be phosphorylated by NTP, and the E197 beta Q mutant protein can only be phosphorylated by succinyl-CoA and P(i). These results demonstrate that the length of the side chain at these positions is not critical, but that the charge is. Most significantly, the E197 beta A mutant protein could not be phosphorylated in either direction. Its crystal structure shows large differences from the wild-type enzyme in the conformation of two residues of the alpha-subunit, Cys 123 alpha-Pro 124 alpha. We postulate that in this conformation, the protein cannot productively bind succinyl-CoA for phosphorylation via succinyl-CoA and P(i).

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Fraser ME, Joyce MA, Ryan DG, Wolodko WT
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference