Take our Survey

Reference: Cho JH, et al. (2001) The modulation of the biological activities of mitochondrial histone Abf2p by yeast PKA and its possible role in the regulation of mitochondrial DNA content during glucose repression. Biochim Biophys Acta 1522(3):175-86

Reference Help

Abstract

The mitochondrial histone, Abf2p, of Saccharomyces cerevisiae is essential for the maintenance of mitochondrial DNA (mtDNA) and appears to play an important role in the recombination and copy number determination of mtDNA. Abf2p, encoded by a nuclear gene, is a member of HMG1 DNA-binding protein family and has two HMG1-Box domains, HMG1-Box A and B. To investigate the role of Abf2p in the control of mtDNA copy number, we asked if the in vivo functions of Abf2p are regulated by the possible modification such as phosphorylation. We found that the N-terminal extended segment (KRPT(21)S(22)) of HMG1-Box A is rapidly and specifically phosphorylated by cAMP-dependent protein kinase (PKA) in vitro. The phosphorylation in this region inhibits the binding of Abf2p to all kinds of DNA including four-way junction DNA and the supercoiling activity of Abf2p itself. The abf2 mutant cells with an abf2(T21A/S22A) allele defective in the phosphorylation site have a severe defect in the regulation of mtDNA content during glucose repression in vivo. These observations suggest that the phosphorylation via PKA, that is activated during glucose repression, may regulate the in vivo functions of Abf2p for the control of mtDNA content during shift from gluconeogenic to fermentative growth.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Cho JH, Lee YK, Chae CB
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference