Reference: Palmieri L, et al. (2000) Yeast mitochondrial carriers: bacterial expression, biochemical identification and metabolic significance. J Bioenerg Biomembr 32(1):67-77

Reference Help

Abstract

The genome of Saccharomyces cerevisiae encodes 35 members of a family proteins that transport metabolites and substrates across the inner membranes of mitochondria. They include three isoforms of the ADP/ATP translocase and the phosphate and citrate carriers. At the start of our work, the functions of the remaining 30 members of the family were unknown. We are attempting to identify these 30 proteins by overexpression of the proteins in specially selected host strains of Escherichia coli that allow the carriers to accumulate at high levels in the form of inclusion bodies. The purified proteins are then reconstituted into proteoliposomes where their transport properties are studied. Thus far, we have identified the dicarboxylate, succinate-fumarate and ornithine carriers. Bacterial overexpression and functional identification, together with characterization of yeast knockout strains, has brought insight into the physiological significance of these transporters. The yeast dicarboxylate carrier sequence has been used to identify the orthologous protein in Caenorhabditis elegans and, in turn, this latter sequence has been used to establish the sequence of the human ortholog.

Reference Type
Journal Article | Review | Research Support, Non-U.S. Gov't
Authors
Palmieri L, Runswick MJ, Fiermonte G, Walker JE, Palmieri F
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference