Take our Survey

Reference: de Nobel H, et al. (2001) Parallel and comparative analysis of the proteome and transcriptome of sorbic acid-stressed Saccharomyces cerevisiae. Yeast 18(15):1413-28

Reference Help

Abstract


Exposure of Saccharomyces cerevisiae to 0.9 mM sorbic acid at pH 4.5 resulted in the upregulation of 10 proteins; Hsp42, Atp2, Hsp26, Ssa1 or Ssa2, Ssb1 or Ssb2, Ssc1, Ssa4, Ach1, Zwf1 and Tdh1; and the downregulation of three proteins; Ade16, Adh3 and Eno2. In parallel, of 6144 ORFs, 94 (1.53%) showed greater than a 1.4-fold increase in transcript level after exposure to sorbic acid and five of these were increased greater than two-fold; MFA1, AGA2, HSP26, SIP18 and YDR533C. Similarly, of 6144 ORFs, 72 (1.17%) showed greater than a 1.4-fold decrease in transcript level and only one of these, PCK1, was decreased greater than two-fold Functional categories of genes that were induced by sorbic acid stress included cell stress (particularly oxidative stress), transposon function, mating response and energy generation. We found that proteomic analysis yielded distinct information from transcript analysis. Only the upregulation of Hsp26 was detected by both methods. Subsequently, we demonstrated that a deletion mutant of Hsp26 was sensitive to sorbic acid. Thus, the induction of Hsp26, which occurs during adaptation to sorbic acid, confers resistance to the inhibitory effects of this compound.

Reference Type
Journal Article | Comparative Study
Authors
de Nobel H, Lawrie L, Brul S, Klis F, Davis M, Alloush H, Coote P
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference