Take our Survey

Reference: Kawai A, et al. (2001) Loss of the mitochondrial Hsp70 functions causes aggregation of mitochondria in yeast cells. J Cell Sci 114(Pt 19):3565-74

Reference Help

Abstract


Ssc1p, a member of the Hsp70 family in the mitochondrial matrix of budding yeast, mediates protein import into mitochondria and prevents irreversible aggregation of proteins in the mitochondrial matrix during folding/assembly or at elevated temperature. Here, we show that functional inactivation of the mitochondrial Hsp70 system causes aggregation of mitochondria. When temperature-sensitive mitochondrial Hsp70 mutant cells were incubated at restrictive temperature, a tubular network of mitochondria was collapsed to form aggregates. Inhibition of protein synthesis in the cytosol did not suppress the mitochondrial aggregation and functional impairment of Tim23, a subunit of mitochondrial protein translocator in the inner membrane, did not cause mitochondrial aggregation. Therefore defects of the Hsp70 function in protein import into mitochondria or resulting accumulation of precursor forms of mitochondrial proteins outside the mitochondria are not the causal reason for the aberrant mitochondrial morphology. By contrast, deletion of Mdj1p, a functional partner for mitochondrial Hsp70 in prevention of irreversible protein aggregation in the matrix, but not in protein import into mitochondria, caused aggregation of mitochondria, which was enhanced at elevated temperature (37 degrees C). The aggregation of mitochondria at 37 degrees C was reversed when the temperature was lowered to 23 degrees C unless protein synthesis was blocked. On the basis of these results, we propose that the mitochondrial matrix contains a protein that is responsible for the maintenance of mitochondrial morphology and requires mitochondrial Hsp70 for its function.

Reference Type
Journal Article
Authors
Kawai A, Nishikawa S, Hirata A, Endo T
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference