Take our Survey

Reference: Kawasaki-Nishi S, et al. (2001) Arg-735 of the 100-kDa subunit a of the yeast V-ATPase is essential for proton translocation. Proc Natl Acad Sci U S A 98(22):12397-402

Reference Help

Abstract


The vacuolar (H(+))-ATPases (V-ATPases) are ATP-dependent proton pumps that acidify intracellular compartments and pump protons across specialized plasma membranes. Proton translocation occurs through the integral V(0) domain, which contains five different subunits (a, d, c, c', and c"). Proton transport is critically dependent on buried acidic residues present in three different proteolipid subunits (c, c', and c"). Mutations in the 100-kDa subunit a have also influenced activity, but none of these residues has proven to be required absolutely for proton transport. On the basis of previous observations on the F-ATPases, we have investigated the role of two highly conserved arginine residues present in the last two putative transmembrane segments of the yeast V-ATPase a subunit (Vph1p). Substitution of Asn, Glu, or Gln for Arg-735 in TM8 gives a V-ATPase that is fully assembled but is totally devoid of proton transport and ATPase activity. Replacement of Arg-735 by Lys gives a V-ATPase that, although completely inactive for proton transport, retains 24% of wild-type ATPase activity, suggesting a partial uncoupling of proton transport and ATP hydrolysis in this mutant. By contrast, nonconservative mutations of Arg-799 in TM9 lead to both defective assembly of the V-ATPase complex and decreases in activity of the assembled V-ATPase. These results suggest that Arg-735 is absolutely required for proton transport by the V-ATPases and is discussed in the context of a revised model of the topology of the 100-kDa subunit a.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Kawasaki-Nishi S, Nishi T, Forgac M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference