Take our Survey

Reference: Zaragoza O, et al. (2001) Regulatory elements in the FBP1 promoter respond differently to glucose-dependent signals in Saccharomyces cerevisiae. Biochem J 359(Pt 1):193-201

Reference Help

Abstract

In Saccharomyces cerevisiae expression of the fructose-1,6-bisphosphatase-encoding gene, FBP1, is controlled by glucose through the upstream activating sequences UAS1 and UAS2 and the upstream repressing sequence URS1 in its promoter. We have studied the regulation of the proteins that could bind to these elements. We have investigated the role of the putative transcription factors Cat8 and Sip4 in the formation of specific DNA-protein complexes with UAS1 and UAS2, and in the expression of UAS1-lacZ and UAS2-lacZ. The expression of CAT8-lacZ and SIP4-lacZ has been also measured in mig1, tup1 or hxk2 mutants, partially refractory to catabolite repression. We conclude that there is no strict correlation between Cat8 and Sip4 expression or in vitro formation of DNA-protein complexes and expression of UAS1-lacZ and UAS2-lacZ. The URS1 element binds the regulatory protein Mig1, which blocks transcription by recruiting the proteins Cyc8 and Tup1. The pattern of complexes of URS1 with nuclear extracts was dependent on the carbon source and on Cyc8, but not on Tup1; it was also affected by the protein kinase Snf1 and by the exportin Msn5. The repression caused by URS1 in a fusion gene was dependent on Mig1, Cyc8 and Tup1, and on the carbon source in the medium; in a snf1 strain the repression observed was independent of the carbon source. Expression of Mig1 could occur in the absence of Snf1 and was moderately sensitive to glucose. We present data showing that different elements of the regulatory system controlling FBP1 responded differently to the concentration of glucose in the medium.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Comparative Study
Authors
Zaragoza O, Vincent O, Gancedo JM
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference