Reference: do Valle Matta MA, et al. (2001) Novel target genes of the yeast regulator Pdr1p: a contribution of the TPO1 gene in resistance to quinidine and other drugs. Gene 272(1-2):111-9

Reference Help

Abstract

The yeast transcription factor Pdr1p regulates the expression of a number of genes, several of which encode ATP-driven transport proteins involved in multiple drug resistance. Among 20 genes containing binding consensus sequences for the transcription factor Pdr1p in their promoter, we studied more particularly the regulation and function of PDR16 (involved in phospholipid synthesis), TPO1 (involved in vacuolar transport of polyamines), YAL061W (homologous to polyol dehydrogenases) and YLR346C (unknown function). We found that the regulation of these four genes depends on Pdr1p, since promoter activities studied by lacZ fusion analysis and mRNA levels studied by Northern blotting analysis changed upon deletion or hyperactivation by the pdr1-3 mutant of this transcription factor. The drug sensitivity of the strains deleted for these genes revealed that TPO1, a gene previously found to be involved in spermidine resistance and vacuolar polyamine transport, is a determinant of multidrug transporter since it also mediates growth resistance to cycloheximide and quinidine. This resistance pattern overlapped with that of YOR273C, a homolog of TPO1. These two homologous transporters are thus bona fide members of the phylogenetic subfamily DHA1 (drug/proton antiport TC 2.A.1. 2) of the major facilitator superfamily. Both YOR273C and TPO1 as well as at least one other determinant involved in the yeast pleiotropic drug resistance network contribute to resistance to a quinoline-containing antimalarial drug.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
do Valle Matta MA, Jonniaux JL, Balzi E, Goffeau A, van den Hazel B
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference