Reference: Sergienko EA and Jordan F (2001) Catalytic acid-base groups in yeast pyruvate decarboxylase. 2. Insights into the specific roles of D28 and E477 from the rates and stereospecificity of formation of carboligase side products. Biochemistry 40(25):7369-81

Reference Help

Abstract

Yeast pyruvate decarboxylase (YPDC), in addition to forming its metabolic product acetaldehyde, can also carry out carboligase reactions in which the central enamine intermediate reacts with acetaldehyde or pyruvate (instead of the usual proton electrophile), resulting in the formation of acetoin and acetolactate, respectively (typically, 1% of the total reaction). Due to the common mechanism shared by the acetaldehyde-forming and carboligase reactions through decarboxylation, a detailed analysis of the rates and stereochemistry of the carboligase products formed by the E477Q, D28A, and D28N active center YPDC variants was undertaken. While substitution at either position led to an approximately 2-3 orders of magnitude lower catalytic efficiency in acetaldehyde formation, the rate of acetoin formation by the E477Q and D28N variants was higher than that by wild-type enzyme. Comparison of the steady-state data for acetaldehyde and acetoin formation revealed that the rate-limiting step for acetaldehyde formation by the D28A, H114F, H115F, and E477Q variants is a step post-decarboxylation. In contrast to the wild-type YPDC and the E477Q variant, the D28A and D28N variants could synthesize acetolactate as a major product. The lower overall rate of side-product formation by the D28A variant than wild-type enzyme attests to participation of D28 in steps leading up to and including decarboxylation. The results also provide insight into the state of ionization of the side chains examined. (R)-Acetoin is produced by the variants with greater enantiomeric excess than by wild-type YPDC. (S)-Acetolactate is the predominant enantiomer produced by the D28-substituted variants, the same configuration as produced by the related plant acetolactate synthase.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Sergienko EA, Jordan F
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference