Take our Survey

Reference: Champoux JJ (2001) DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem 70:369-413

Reference Help

Abstract


DNA topoisomerases solve the topological problems associated with DNA replication, transcription, recombination, and chromatin remodeling by introducing temporary single- or double-strand breaks in the DNA. In addition, these enzymes fine-tune the steady-state level of DNA supercoiling both to facilitate protein interactions with the DNA and to prevent excessive supercoiling that is deleterious. In recent years, the crystal structures of a number of topoisomerase fragments, representing nearly all the known classes of enzymes, have been solved. These structures provide remarkable insights into the mechanisms of these enzymes and complement previous conclusions based on biochemical analyses. Surprisingly, despite little or no sequence homology, both type IA and type IIA topoisomerases from prokaryotes and the type IIA enzymes from eukaryotes share structural folds that appear to reflect functional motifs within critical regions of the enzymes. The type IB enzymes are structurally distinct from all other known topoisomerases but are similar to a class of enzymes referred to as tyrosine recombinases. The structural themes common to all topoisomerases include hinged clamps that open and close to bind DNA, the presence of DNA binding cavities for temporary storage of DNA segments, and the coupling of protein conformational changes to DNA rotation or DNA movement. For the type II topoisomerases, the binding and hydrolysis of ATP further modulate conformational changes in the enzymes to effect changes in DNA topology.

Reference Type
Journal Article | Review
Authors
Champoux JJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference