Take our Survey

Reference: Natarajan K, et al. (2001) Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol 21(13):4347-68

Reference Help

Abstract

Starvation for amino acids induces Gcn4p, a transcriptional activator of amino acid biosynthetic genes in Saccharomyces cerevisiae. In an effort to identify all genes regulated by Gcn4p during amino acid starvation, we performed cDNA microarray analysis. Data from 21 pairs of hybridization experiments using two different strains derived from S288c revealed that more than 1,000 genes were induced, and a similar number were repressed, by a factor of 2 or more in response to histidine starvation imposed by 3-aminotriazole (3AT). Profiling of a gcn4Delta strain and a constitutively induced mutant showed that Gcn4p is required for the full induction by 3AT of at least 539 genes, termed Gcn4p targets. Genes in every amino acid biosynthetic pathway except cysteine and genes encoding amino acid precursors, vitamin biosynthetic enzymes, peroxisomal components, mitochondrial carrier proteins, and autophagy proteins were all identified as Gcn4p targets. Unexpectedly, genes involved in amino acid biosynthesis represent only a quarter of the Gcn4p target genes. Gcn4p also activates genes involved in glycogen homeostasis, and mutant analysis showed that Gcn4p suppresses glycogen levels in amino acid-starved cells. Numerous genes encoding protein kinases and transcription factors were identified as targets, suggesting that Gcn4p is a master regulator of gene expression. Interestingly, expression profiles for 3AT and the alkylating agent methyl methanesulfonate (MMS) overlapped extensively, and MMS induced GCN4 translation. Thus, the broad transcriptional response evoked by Gcn4p is produced by diverse stress conditions. Finally, profiling of a gcn4Delta mutant uncovered an alternative induction pathway operating at many Gcn4p target genes in histidine-starved cells.

Reference Type
Journal Article
Authors
Natarajan K, Meyer MR, Jackson BM, Slade D, Roberts C, Hinnebusch AG, Marton MJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference