Reference: Cote CA and Peculis BA (2001) Role of the ITS2-proximal stem and evidence for indirect recognition of processing sites in pre-rRNA processing in yeast. Nucleic Acids Res 29(10):2106-16

Reference Help

Abstract


Eucaryotic ribosome biogenesis involves many cis-acting sequences and trans-acting factors, including snoRNAS: We have used directed mutagenesis of rDNA plasmids in yeast to identify critical sequence and structural elements within and flanking the ITS2-proximal stem. This base paired structure, present in the mature ribosome, is formed between the 5'-end of 25S and the 3'-end of 5.8S rRNAS: Previously we demonstrated that formation of this structure was critical for pre-rRNA processing in yeast. Here we show that there are no sequence-specific recognition elements within the ITS2-proximal stem, rather the structure of this stem is critical for processing. This stem cannot exceed a specific length, but there are different length restrictions for different regions within this tripartite stem. Neither the conserved unpaired nucleotides within the stem nor the sequence of the mature rRNA at the processing sites are required for processing. Collectively, these results suggest a measuring model whereby initial cleavage within ITS2 at the C2 processing site and termination of subsequent exonuclease activity yielding the mature termini are affected by the relative position of sequence and structural elements within the ITS2-proximal stem.

Reference Type
Journal Article
Authors
Cote CA, Peculis BA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference