Reference: MacMullen C, et al. (2001) Hyperinsulinism/hyperammonemia syndrome in children with regulatory mutations in the inhibitory guanosine triphosphate-binding domain of glutamate dehydrogenase. J Clin Endocrinol Metab 86(4):1782-7

Reference Help

Abstract

The hyperinsulinism/hyperammonemia (HI/HA) syndrome is a form of congenital hyperinsulinism in which affected children have recurrent symptomatic hypoglycemia together with asymptomatic, persistent elevations of plasma ammonium levels. We have shown that the disorder is caused by dominant mutations of the mitochondrial enzyme, glutamate dehydrogenase (GDH), that impair sensitivity to the allosteric inhibitor, GTP. In 65 HI/HA probands screened for GDH mutations, we identified 19 (29%) who had mutations in a new domain, encoded by exons 6 and 7. Six new mutations were found: Ser(217)Cys, Arg(221)Cys, Arg(265)Thr, Tyr(266)Cys, Arg(269)Cys, and Arg(269)HIS: In all five mutations tested, lymphoblast GDH showed reduced sensitivity to allosteric inhibition by GTP (IC(50), 60--250 vs. 20--50 nmol/L in normal subjects), consistent with a gain of enzyme function. Studies of ATP allosteric effects on GDH showed a triphasic response with a decrease in high affinity inhibition of enzyme activity in HI/HA lymphoblasts. All of the residues altered by exons 6 and 7 HI/HA mutations lie in the GTP-binding domain of the enzyme. These data confirm the importance of allosteric regulation of GDH as a control site for amino acid-stimulated insulin secretion and indicate that the GTP-binding site is essential for regulation of GDH activity by both GTP and ATP.

Reference Type
Journal Article
Authors
MacMullen C, Fang J, Hsu BY, Kelly A, de Lonlay-Debeney P, Saudubray JM, Ganguly A, Smith TJ, Stanley CA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference