Reference: Spurway TD, et al. (2001) Early events in glycosylphosphatidylinositol anchor addition. substrate proteins associate with the transamidase subunit gpi8p. J Biol Chem 276(19):15975-82

Reference Help

Abstract

The addition of glycosylphosphatidylinositol (GPI) anchors to proteins occurs by a transamidase-catalyzed reaction mechanism soon after completion of polypeptide synthesis and translocation. We show that placental alkaline phosphatase becomes efficiently GPI-anchored when translated in the presence of semipermeabilized K562 cells but is not GPI-anchored in cell lines defective in the transamidase subunit hGpi8p. By studying the synthesis of placental alkaline phosphatase, we demonstrate that folding of the protein is not influenced by the addition of a GPI anchor and conversely that GPI anchor addition does not require protein folding. These results demonstrate that folding of the ectodomain and GPI addition are two distinct processes and can be mutually exclusive. When GPI addition is prevented, either by synthesis of the protein in the presence of cell lines defective in GPI addition or by mutation of the GPI carboxyl-terminal signal sequence cleavage site, the substrate forms a prolonged association with the transamidase subunit hGpi8p. The ability of the transamidase to recognize and associate with GPI anchor signal sequences provides an explanation for the retention of GPI-anchored protein within the ER in the absence of GPI anchor addition.

Reference Type
Journal Article
Authors
Spurway TD, Dalley JA, High S, Bulleid NJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference