Take our Survey

Reference: Van Dyck L and Langer T (1999) ATP-dependent proteases controlling mitochondrial function in the yeast Saccharomyces cerevisiae. Cell Mol Life Sci 56(9-10):825-42

Reference Help

Abstract


Regulated protein degradation by ATP-dependent proteases plays a fundamental role in the biogenesis of mitochondria. Membrane-bound and soluble ATP-dependent proteases have been identified in various subcompartments of this organelle. Subunits composing these proteases are evolutionarily conserved from yeast to humans and, in support of an endosymbiotic origin of mitochondria, evolved from prokaryotic ancestors: the PIM1/Lon protease is active in the matrix of mitochondria, while the i-AAA protease and the m-AAA protease mediate the turnover of inner membrane proteins. Most of the knowledge concerning the biogenesis and the physiological role of ATP-dependent proteases comes from studies in the yeast Saccharomyces cerevisiae. Proteases were found to be required for mitochondrial stasis, for the maintenance of the morphology of the organelle and for mitochondrial genome integrity. ATP-dependent proteolysis is crucial for the expression of mitochondrially encoded subunits of respiratory chain complexes and for the assembly of these complexes. Hence, mitochondrial ATP-dependent proteases exert multiple roles which are essential for the maintenance of cellular respiratory competence.

Reference Type
Journal Article | Review | Research Support, Non-U.S. Gov't
Authors
Van Dyck L, Langer T
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference