Reference: Briand JF, et al. (2001) Cross talk between tRNA and rRNA synthesis in Saccharomyces cerevisiae. Mol Cell Biol 21(1):189-95

Reference Help

Abstract

Temperature-sensitive RNA polymerase III (rpc160-112 and rpc160-270) mutants were analyzed for the synthesis of tRNAs and rRNAs in vivo, using a double-isotopic-labeling technique in which cells are pulse-labeled with [(33)P]orthophosphate and coextracted with [(3)H]uracil-labeled wild-type cells. Individual RNA species were monitored by Northern blot hybridization or amplified by reverse transcription. These mutants impaired the synthesis of RNA polymerase III transcripts with little or no influence on mRNA synthesis but also largely turned off the formation of the 25S, 18S, and 5.8S mature rRNA species derived from the common 35S transcript produced by RNA polymerase I. In the rpc160-270 mutant, this parallel inhibition of tRNA and rRNA synthesis also occurred at the permissive temperature (25 degrees C) and correlated with an accumulation of 20S pre-rRNA. In the rpc160-112 mutant, inhibition of rRNA synthesis and the accumulation of 20S pre-rRNA were found only at 37 degrees C. The steady-state rRNA/tRNA ratio of these mutants reflected their tRNA and rRNA synthesis pattern: the rpc160-112 mutant had the threefold shortage in tRNA expected from its preferential defect in tRNA synthesis at 25 degrees C, whereas rpc160-270 cells completely adjusted their rRNA/tRNA ratio down to a wild-type level, consistent with the tight coupling of tRNA and rRNA synthesis in vivo. Finally, an RNA polymerase I (rpa190-2) mutant grown at the permissive temperature had an enhanced level of pre-tRNA, suggesting the existence of a physiological coupling between rRNA synthesis and pre-tRNA processing.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Briand JF, Navarro F, Gadal O, Thuriaux P
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference