Reference: Fiermonte G, et al. (2001) Identification of the human mitochondrial oxodicarboxylate carrier. Bacterial expression, reconstitution, functional characterization, tissue distribution, and chromosomal location. J Biol Chem 276(11):8225-30

Reference Help

Abstract

In Saccharomyces cerevisiae, the genes ODC1 and ODC2 encode isoforms of the oxodicarboxylate carrier. They both transport C5-C7 oxodicarboxylates across the inner membranes of mitochondria and are members of the family of mitochondrial carrier proteins. Orthologs are encoded in the genomes of Caenorhabditis elegans and Drosophila melanogaster, and a human expressed sequence tag (EST) encodes part of a closely related protein. Information from the EST has been used to complete the human cDNA sequence. This sequence has been used to map the gene to chromosome 14q11.2 and to show that the gene is expressed in all tissues that were examined. The human protein was produced by overexpression in Escherichia coli, purified, and reconstituted into phospholipid vesicles. It has similar transport characteristics to the yeast oxodicarboxylate carrier proteins (ODCs). Both the human and yeast ODCs catalyzed the transport of the oxodicarboxylates 2-oxoadipate and 2-oxoglutarate by a counter-exchange mechanism. Adipate, glutarate, and to a lesser extent, pimelate, 2-oxopimelate, 2-aminoadipate, oxaloacetate, and citrate were also transported by the human ODC. The main differences between the human and yeast ODCs are that 2-aminoadipate is transported by the former but not by the latter, whereas malate is transported by the yeast ODCs but not by the human ortholog. In mammals, 2-oxoadipate is a common intermediate in the catabolism of lysine, tryptophan, and hydroxylysine. It is transported from the cytoplasm into mitochondria where it is converted into acetyl-CoA. Defects in human ODC are likely to be a cause of 2-oxoadipate acidemia, an inborn error of metabolism of lysine, tryptophan, and hydroxylysine.

Reference Type
Journal Article
Authors
Fiermonte G, Dolce V, Palmieri L, Ventura M, Runswick MJ, Palmieri F, Walker JE
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference