Reference: Manson McGuire A and Church GM (2000) Predicting regulons and their cis-regulatory motifs by comparative genomics. Nucleic Acids Res 28(22):4523-30

Reference Help

Abstract


We have combined and compared three techniques for predicting functional interactions based on comparative genomics (methods based on conserved operons, protein fusions and correlated evolution) and optimized these methods to predict coregulated sets of genes in 24 complete genomes, including Saccharomyces cerevisiae, Caenorhabditis elegans and 22 prokaryotes. The method based on conserved operons was the most useful for this purpose. Upstream regions of the genes comprising these predicted regulons were then used to search for regulatory motifs in 22 prokaryotic genomes using the motif-discovery program AlignACE. Many significant upstream motifs, including five known Escherichia coli regulatory motifs, were identified in this manner. The presence of a significant regulatory motif was used to refine the members of the predicted regulons to generate a final set of predicted regulons that share significant regulatory elements.

Reference Type
Authors
Manson McGuire A, Church GM
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference