Reference: Geissler A, et al. (2000) Membrane potential-driven protein import into mitochondria. The sorting sequence of cytochrome b(2) modulates the deltapsi-dependence of translocation of the matrix-targeting sequence. Mol Biol Cell 11(11):3977-91

Reference Help

Abstract

The transport of preproteins into or across the mitochondrial inner membrane requires the membrane potential Deltapsi across this membrane. Two roles of Deltapsi in the import of cleavable preproteins have been described: an electrophoretic effect on the positively charged matrix-targeting sequences and the activation of the translocase subunit Tim23. We report the unexpected finding that deletion of a segment within the sorting sequence of cytochrome b(2), which is located behind the matrix-targeting sequence, strongly influenced the Deltapsi-dependence of import. The differential Deltapsi-dependence was independent of the submitochondrial destination of the preprotein and was not attributable to the requirement for mitochondrial Hsp70 or Tim23. With a series of preprotein constructs, the net charge of the sorting sequence was altered, but the Deltapsi-dependence of import was not affected. These results suggested that the sorting sequence contributed to the import driving mechanism in a manner distinct from the two known roles of Deltapsi. Indeed, a charge-neutral amino acid exchange in the hydrophobic segment of the sorting sequence generated a preprotein with an even better import, i.e. one with lower Deltapsi-dependence than the wild-type preprotein. The sorting sequence functioned early in the import pathway since it strongly influenced the efficiency of translocation of the matrix-targeting sequence across the inner membrane. These results suggest a model whereby an electrophoretic effect of Deltapsi on the matrix-targeting sequence is complemented by an import-stimulating activity of the sorting sequence.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Geissler A, Krimmer T, Bomer U, Guiard B, Rassow J, Pfanner N
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference