Reference: Williams DD, et al. (2001) Characterization of the initiation factor eIF2B and its regulation in Drosophila melanogaster. J Biol Chem 276(6):3733-42

Reference Help

Abstract


Eukaryotic initiation factor (eIF) 2B catalyzes a key regulatory step in the initiation of mRNA translation. eIF2B is well characterized in mammals and in yeast, although little is known about it in other eukaryotes. eIF2B is a hetropentamer which mediates the exchange of GDP for GTP on eIF2. In mammals and yeast, its activity is regulated by phosphorylation of eIF2alpha. Here we have cloned Drosophila melanogaster cDNAs encoding polypeptides showing substantial similarity to eIF2B subunits from yeast and mammals. They also exhibit the other conserved features of these proteins. D. melanogaster eIF2Balpha confers regulation of eIF2B function in yeast, while eIF2Bepsilon shows guanine nucleotide exchange activity. In common with mammalian eIF2Bepsilon, D. melanogaster eIF2Bepsilon is phosphorylated by glycogen synthase kinase-3 and casein kinase II. Phosphorylation of partially purified D. melanogaster eIF2B by glycogen synthase kinase-3 inhibits its activity. Extracts of D. melanogaster S2 Schneider cells display eIF2B activity, which is inhibited by phosphorylation of eIF2alpha, showing the insect factor is regulated similarly to eIF2B from other species. In S2 cells, serum starvation increases eIF2alpha phosphorylation, which correlates with inhibition of eIF2B, and both effects are reversed by serum treatment. This shows that eIF2alpha phosphorylation and eIF2B activity are under dynamic regulation by serum. eIF2alpha phosphorylation is also increased by endoplasmic reticulum stress in S2 cells. These are the first data concerning the structure, function or control of eIF2B from D. melanogaster.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Williams DD, Pavitt GD, Proud CG
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference