Reference: Wu J, et al. (2000) Carboxyl methylation of the phosphoprotein phosphatase 2A catalytic subunit promotes its functional association with regulatory subunits in vivo. EMBO J 19(21):5672-81

Reference Help

Abstract


The phosphoprotein phosphatase 2A (PP2A) catalytic subunit contains a methyl ester on its C-terminus, which in mammalian cells is added by a specific carboxyl methyltransferase and removed by a specific carboxyl methylesterase. We have identified genes in yeast that show significant homology to human carboxyl methyltransferase and methylesterase. Extracts of wild-type yeast cells contain carboxyl methyltransferase activity, while extracts of strains deleted for one of the methyltransferase genes, PPM1, lack all activity. Mutation of PPM1 partially disrupts the PP2A holoenzyme in vivo and ppm1 mutations exhibit synthetic lethality with mutations in genes encoding the B or B' regulatory subunit. Inactivation of PPM1 or overexpression of PPE1, the yeast gene homologous to bovine methylesterase, yields phenotypes similar to those observed after inactivation of either regulatory subunit. These phenotypes can be reversed by overexpression of the B regulatory subunit. These results demonstrate that Ppm1 is the sole PP2A methyltransferase in yeast and that its activity is required for the integrity of the PP2A holoenzyme.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S. | Comparative Study
Authors
Wu J, Tolstykh T, Lee J, Boyd K, Stock JB, Broach JR
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference