Reference: True HL and Lindquist SL (2000) A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 407(6803):477-83

Reference Help

Abstract

A major enigma in evolutionary biology is that new forms or functions often require the concerted effects of several independent genetic changes. It is unclear how such changes might accumulate when they are likely to be deleterious individually and be lost by selective pressure. The Saccharomyces cerevisiae prion [PSI+] is an epigenetic modifier of the fidelity of translation termination, but its impact on yeast biology has been unclear. Here we show that [PSI+] provides the means to uncover hidden genetic variation and produce new heritable phenotypes. Moreover, in each of the seven genetic backgrounds tested, the constellation of phenotypes produced was unique. We propose that the epigenetic and metastable nature of [PSI+] inheritance allows yeast cells to exploit pre-existing genetic variation to thrive in fluctuating environments. Further, the capacity of [PSI+] to convert previously neutral genetic variation to a non-neutral state may facilitate the evolution of new traits.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
True HL, Lindquist SL
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference