Take our Survey

Reference: Moore IK, et al. (2000) Formation of circular amplifications in Saccharomyces cerevisiae by a breakage-fusion-bridge mechanism. Environ Mol Mutagen 36(2):113-20

Reference Help

Abstract

Primary gene amplification, the mutation from one gene copy per genome to two or more copies per genome, is a major mechanism of oncogene overexpression in human cancers. Analysis of the structures of amplifications can provide important evidence about the mechanism of amplification formation. We report here the analysis of the structures of four independent spontaneous circular amplifications of ADH4:CUP1 in the yeast Saccharomyces cerevisiae. The structures of all four amplifications are consistent with their formation by a breakage-fusion-bridge (BFB) mechanism. All four of these amplifications include a centromere as predicted by the BFB model. All four of the amplifications have a novel joint located between the amplified DNA and the telomere, which results in a dicentric chromosome, and is adjacent to all the copies of the amplified DNA as predicted by the BFB model. In addition we demonstrated that two of the amplifications contain most of chromosome VII in an unrearranged form in a 1:1 ratio with the normal copy of chromosome VII, again consistent with the predictions of the BFB model. Finally, all four amplifications are circular, one stable endpoint for molecules after breakage- fusion-bridge. Copyright 2000 Wiley-Liss, Inc.

Reference Type
Journal Article
Authors
Moore IK, Martin MP, Dorsey MJ, Paquin CE
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference