Take our Survey

Reference: Khalfan W, et al. (2000) Functional interaction between the PKC1 pathway and CDC31 network of SPB duplication genes. Genetics 155(4):1543-59

Reference Help

Abstract

The earliest known step in yeast spindle pole body (SPB) duplication requires Cdc31p and Kar1p, two physically interacting SPB components, and Dsk2p and Rad23p, a pair of ubiquitin-like proteins. Components of the PKC1 pathway were found to interact with these SPB duplication genes in two independent genetic screens. Initially, SLG1 and PKC1 were obtained as high-copy suppressors of dsk2Delta rad23Delta and a mutation in MPK1 was synthetically lethal with kar1-Delta17. Subsequently, we demonstrated extensive genetic interactions between the PKC1 pathway and the SPB duplication mutants that affect Cdc31p function. The genetic interactions are unlikely to be related to the cell-wall integrity function of the PKC1 pathway because the SPB mutants did not exhibit cell-wall defects. Overexpression of multiple PKC1 pathway components suppressed the G2/M arrest of the SPB duplication mutants and mutations in MPK1 exacerbated the cell cycle arrest of kar1-Delta17, suggesting a role for the PKC1 pathway in SPB duplication. We also found that mutations in SPC110, which encodes a major SPB component, showed genetic interactions with both CDC31 and the PKC1 pathway. In support of the model that the PKC1 pathway regulates SPB duplication, one of the phosphorylated forms of Spc110p was absent in pkc1 and mpk1Delta mutants.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Khalfan W, Ivanovska I, Rose MD
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference