Take our Survey

Reference: Huang Y, et al. (2000) Isolation and cloning of four subunits of a fission yeast TFIIIC complex that includes an ortholog of the human regulatory protein TFIIICbeta. J Biol Chem 275(40):31480-7

Reference Help

Abstract


Eukaryotic tRNA genes are controlled by proximal and downstream elements that direct transcription by RNA polymerase (pol) III. Transcription factors (TFs) that reside near the initiation site are related in Saccharomyces cerevisiae and humans, while those that reside at or downstream of the B box share no recognizable sequence relatedness. Human TFIIICbeta is a transcriptional regulator that exhibits no homology to S. cerevisiae sequences on its own. We cloned an essential Schizosaccharomyces pombe gene that encodes a protein, Sfc6p, with homology to the S. cerevisiae TFIIIC subunit, TFC6p, that extends to human TFIIICbeta. We also isolated and cloned S. pombe homologs of three other TFIIIC subunits, Sfc3p, Sfc4p, and Sfc1p, the latter two of which are conserved from S. cerevisiae to humans, while the former shares homology with the S. cerevisiae B box-binding homolog only. Sfc6p is a component of a sequence-specific DNA-binding complex that also contains the B box-binding homolog, Sfc3p. Immunoprecipitation of Sfc3p further revealed that Sfc1p, Sfc3p, Sfc4p, and Sfc6p are associated in vivo and that the isolated Sfc3p complex is active for pol III-mediated transcription of a S. pombe tRNA gene in vitro. These results establish a link between the downstream pol III TFs in yeast and humans.

Reference Type
Journal Article
Authors
Huang Y, Hamada M, Maraia RJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference