Take our Survey

Reference: Raychaudhuri S, et al. (2000) Principal components analysis to summarize microarray experiments: application to sporulation time series. Pac Symp Biocomput :455-66

Reference Help

Abstract


A series of microarray experiments produces observations of differential expression for thousands of genes across multiple conditions. It is often not clear whether a set of experiments are measuring fundamentally different gene expression states or are measuring similar states created through different mechanisms. It is useful, therefore, to define a core set of independent features for the expression states that allow them to be compared directly. Principal components analysis (PCA) is a statistical technique for determining the key variables in a multidimensional data set that explain the differences in the observations, and can be used to simplify the analysis and visualization of multidimensional data sets. We show that application of PCA to expression data (where the experimental conditions are the variables, and the gene expression measurements are the observations) allows us to summarize the ways in which gene responses vary under different conditions. Examination of the components also provides insight into the underlying factors that are measured in the experiments. We applied PCA to the publicly released yeast sporulation data set (Chu et al. 1998). In that work, 7 different measurements of gene expression were made over time. PCA on the time-points suggests that much of the observed variability in the experiment can be summarized in just 2 components--i.e. 2 variables capture most of the information. These components appear to represent (1) overall induction level and (2) change in induction level over time. We also examined the clusters proposed in the original paper, and show how they are manifested in principal component space. Our results are available on the internet at http:?www.smi.stanford.edu/project/helix/PCArray .

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Raychaudhuri S, Stuart JM, Altman RB
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference