Reference: Wittberger D, et al. (2000) Evaluation of uranyl photocleavage as a probe to monitor ion binding and flexibility in RNAs. J Mol Biol 300(2):339-52

Reference Help

Abstract

In order to evaluate uranyl photocleavage as a tool to identify and characterize structural and dynamic properties in RNA, we compared uranyl cleavage sites in five RNA molecules with known X-ray structures, namely the hammerhead and hepatitis delta virus ribozymes, the P4-P6 domain of the Tetrahymena group I intron, as well as tRNA(Phe) and tRNA(Asp) from yeast. Uranyl photocleavage was observed at specific positions in all molecules investigated. In order to characterize the sites, photocleavage was performed in the absence and in increasing amounts of MgCl(2). Uranyl photocleavage correlates well with sites of low calculated accessibility, suggesting that uranyl ions bind in tight RNA pockets formed by close approach of phosphate groups. RNA foldings require ion binding, usually magnesium ions. Thus, upon the adoption of the native structure, uranyl ions can no longer bind well except in flexible and open to the solvent regions that can undergo induced-fit without disrupting the native fold. Uranyl photocleavage was compared to N-ethyl-N-nitrosourea and lead-induced cleavages in the context of the three-dimensional X-ray structures. Overall, the regions protected from ENU attack are sites of uranyl cleavage, indicating sites of low accessibility which can form ion binding sites. On the contrary, lead cleavages occur at flexible and accessible sites and correlate with the unspecific cleavages prevalent in dynamic and open regions. Applied in a magnesium-dependent manner, and only in combination with other backbone probing agents such as N-ethyl-N-nitrosourea, lead and Fenton cleavage, uranyl probing has the potential to reveal high-affinity metal ion environments, as well as regions involved in conformational transitions.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Wittberger D, Berens C, Hammann C, Westhof E, Schroeder R
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference