Take our Survey

Reference: Gangloff S, et al. (2000) Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases. Nat Genet 25(2):192-4

Reference Help

Abstract

DNA helicases are involved in many aspects of DNA metabolism, including transcription, replication, recombination and repair. In the yeast Saccharomyces cerevisiae, the absence of the Sgs1 helicase results in genomic instability and accelerated ageing. In human cells, mutations in orthologues of SGS1 lead to Bloom (BS), Werner (WS) or Rothmund-Thomson (RTS) syndromes, which are rare, autosomal recessive diseases characterized by genetic instability associated with cancer predisposition. Although data concerning these human diseases are accumulating, there is still no clear idea of the function of the proteins involved. Here we show that sgs1Delta mutants are deficient in DNA repair and are defective for induced recombination events that involve homologous chromosomes. The role of homologous recombination is further evidenced in haploid cells in which both Sgs1p and Srs2p are absent. Yeast SRS2 encodes another DNA helicase involved in the maintenance of genome integrity. Our data suggest that some defects observed in BS, WS or RTS are the consequence of unrestrained recombination.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Gangloff S, Soustelle C, Fabre F
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference