Take our Survey

Reference: Nijtmans LG, et al. (2000) Prohibitins act as a membrane-bound chaperone for the stabilization of mitochondrial proteins. EMBO J 19(11):2444-51

Reference Help

Abstract


Prohibitins are ubiquitous, abundant and evolutionarily strongly conserved proteins that play a role in important cellular processes. Using blue native electrophoresis we have demonstrated that human prohibitin and Bap37 together form a large complex in the mitochondrial inner membrane. This complex is similar in size to the yeast complex formed by the homologues Phb1p and Phb2p. In yeast, levels of this complex are increased on co-overexpression of both Phb1p and Phb2p, suggesting that these two proteins are the only components of the complex. Pulse-chase experiments with mitochondria isolated from phb1/phb2-null and PHB1/2 overexpressing cells show that the Phb1/2 complex is able to stabilize newly synthesized mitochondrial translation products. This stabilization probably occurs through a direct interaction because association of mitochondrial translation products with the Phb1/2 complex could be demonstrated. The fact that Phb1/2 is a large multimeric complex, which provides protection of native peptides against proteolysis, suggests a functional homology with protein chaperones with respect to their ability to hold and prevent misfolding of newly synthesized proteins.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Comparative Study
Authors
Nijtmans LG, de Jong L, Artal Sanz M, Coates PJ, Berden JA, Back JW, Muijsers AO, van der Spek H, Grivell LA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference