Take our Survey

Reference: Vainberg IE, et al. (2000) Nuclear export of heat shock and non-heat-shock mRNA occurs via similar pathways. Mol Cell Biol 20(11):3996-4005

Reference Help

Abstract


Several studies of the yeast Saccharomyces cerevisiae support differential regulation of heat shock mRNA (hs mRNA) and non-hs mRNA nuclear export during stress. These include the finding that hs mRNA export at 42 degrees C is inhibited in the absence of the nucleoporinlike protein Rip1p (also called Nup42p) (C. A. Saavedra, C. M. Hammell, C. V. Heath, and C. N. Cole, Genes Dev. 11:2845-2856, 1997; F. Stutz, J. Kantor, D. Zhang, T. McCarthy, M. Neville, and M. Rosbash, Genes Dev. 11:2857-2868, 1997). However, the results reported in this paper provide little evidence for selective non-hs mRNA retention or selective hs mRNA export under heat shock conditions. First, we do not detect a block to non-hs mRNA export at 42 degrees C in a wild-type strain. Second, hs mRNA export appears to be mediated by the Ran system and several other factors previously reported to be important for general mRNA export. Third, the export of non-hs mRNA as well as hs mRNA is inhibited in the absence of Rip1p at 42 degrees C. As a corollary, we find no evidence for cis-acting hs mRNA sequences that promote transport during heat shock. Taken together, our data suggest that a shift to 42 degrees C in the absence of Rip1p impacts a late stage of transport affecting most if not all mRNA.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Vainberg IE, Dower K, Rosbash M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference