Take our Survey

Reference: Tang BL, et al. (2000) Mammalian homologues of yeast sec31p. An ubiquitously expressed form is localized to endoplasmic reticulum (ER) exit sites and is essential for ER-Golgi transport. J Biol Chem 275(18):13597-604

Reference Help

Abstract


The yeast coat protein II (COPII) is responsible for vesicle budding from the endoplasmic reticulum (ER). Mammalian functional homologues for all yeast COPII components, except for Sec31p, have been reported. We have cloned a mammalian cDNA whose product (Sec31A) is about 26% identical to Saccharomyces cerevisiae Sec31p. Data base searches also revealed another partial sequence encoding a polypeptide (Sec31B) that is 40% identical to Sec31A. Northern analysis revealed that Sec31A transcripts are ubiquitously and abundantly expressed, while Sec31B transcripts are particularly enriched in the testis and thymus, but present in very low levels in other tissues. Sec31A is localized to vesicular structures that scatter throughout the cell but are concentrated at the perinuclear region. The structures marked by Sec31A contain Sec13, a component of COPII that is well characterized to mark the ER exit sites. Immunoelectron microscopy revealed that Sec31A colocalizes with Sec13 in structures with extensive vesicular-tubular profiles. Antibodies raised against a C-terminal portion of Sec31A co-precipitate Sec13 and inhibit ER-Golgi transport of temperature-arrested vesicular stomatitis G protein in a semi-intact cell assay. Cytosol immunodepleted of Sec31A failed to support vesicular stomatitis G protein transport, which can be rescued by a high molecular weight fraction of the cytosol containing both Sec31A and Sec13. We conclude that Sec31A represents a functional mammalian homologue of yeast Sec31p.

Reference Type
Journal Article
Authors
Tang BL, Zhang T, Low DY, Wong ET, Horstmann H, Hong W
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference