Reference: Petrov VV, et al. (2000) Functional role of charged residues in the transmembrane segments of the yeast plasma membrane H+-ATPase. J Biol Chem 275(21):15709-16

Reference Help

Abstract

As defined by hydropathy analysis, the membrane-spanning segments of the yeast plasma membrane H(+)-ATPase contain seven negatively charged amino acids (Asp and Glu) and four positively charged amino acids (Arg and His). To explore the functional role of these residues, site-directed mutants at all 11 positions and at Glu-288, located near the cytoplasmic end of M3, have been constructed and expressed in yeast secretory vesicles. Substitutions at four of the positions (Glu-129, Glu-288, Asp-833, and Arg-857) had no significant effect on ATP hydrolysis or ATP-dependent proton pumping, substitutions at five additional positions (Arg-695, His-701, Asp-730, Asp-739, and Arg-811) led to misfolding of the ATPase and blockage at an early stage of biogenesis, and substitutions of Asp-143 allowed measurable biogenesis but nearly abolished ATP hydrolysis and proton transport. Of greatest interest were mutations of Glu-703 in M5 and Glu-803 in M8, which altered the apparent coupling between hydrolysis and transport. Three Glu-703 mutants (E703Q, E703L, E703D) showed significantly reduced pumping over a wide range of hydrolysis values and thus appeared to be partially uncoupled. At Glu-803, by contrast, one mutant (E803N) was almost completely uncoupled, while another (E803Q) pumped protons at an enhanced rate relative to the rate of ATP hydrolysis. Both Glu-703 and Glu-803 occupy positions at which amino acid substitutions have been shown to affect transport by mammalian P-ATPases. Taken together, the results provide growing evidence that residues in membrane segments 5 and 8 of the P-ATPases contribute to the cation transport pathway and that the fundamental mechanism of transport has been conserved throughout the group.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Petrov VV, Padmanabha KP, Nakamoto RK, Allen KE, Slayman CW
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference