Reference: Xiao Y, et al. (2000) Partial uncoupling of the mitochondrial membrane by a heterozygous null mutation in the gene encoding the gamma- or delta-subunit of the yeast mitochondrial ATPase. J Biol Chem 275(10):6963-8

Reference Help

Abstract

Prior genetic studies indicated that the yeast mitochondrial ATP synthase can be assembled into enzyme complexes devoid of the gamma-, delta-, or epsilon-subunits (Lai-Zhang, J., Xiao, Y., and Mueller, D. M. (1999) EMBO J. 18, 58-64). These subunit-deficient complexes were postulated to uncouple the mitochondrial membrane thereby causing negative cellular phenotypes. This study provides biochemical and additional genetic data that support this hypothesis. The genetic data indicate that in a diploid cell, a heterozygous deletion mutation in the gene encoding the gamma- or delta-subunit of the ATPase is semidominant negative due to a decrease in the gene number from 2 to 1. However, the heterozygous atp2Delta mutation is epistatic to the heterozygous mutation in the gene encoding gamma or delta, suggesting that the semidominant negative effect is because of a gain of activity in the cells. Biochemical studies using mitochondria isolated from the yeast strains that are heterozygous for a mutation in gamma or delta indicate that the mitochondria are partially uncoupled. These results support the hypothesis that the negative phenotypes are caused by the formation of a gamma- or delta-less ATP synthase complex that is uncoupled.

Reference Type
Journal Article
Authors
Xiao Y, Metzl M, Mueller DM
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference